Cutting data recommendations

Uddeholm Alvar® 14 380 HB

Cutting data formulae

Turning

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)

Spindle speed,
$$n = \frac{1000 \cdot v_c}{\pi \cdot D}$$
 (rev/min)

Material removal rate, $Q = v_c \cdot a_p \cdot f \quad (cm^3 / min)$

Surface roughness,
$$R_a \approx \frac{f^2 \cdot 50}{r_{\varepsilon}}$$
 (μm)

Legend

v_c = Cutting speed (m/min)

n = Spindle speed (rev/min)

f = Feed per rev (mm/rev)

a_p = Axial depth of cut (mm)

D = Workpiece diameter (mm)

Q = Material removal rate (cm³/min)

 R_a = Surface roughness (μ m)

r_e = Nose radius (mm)

Milling

$$v_c = \frac{\pi \cdot D \cdot n}{1000} (m/\text{min})$$

$$n = \frac{1000 \cdot vc}{\pi \cdot D} \text{ (rev/min)}$$

 $vf = fz \cdot z \cdot n = f \cdot n(\text{mm/min})$

$$h_m = fz \cdot \sqrt{\frac{ae}{D}} (\text{mm}) \frac{ae}{D} < 0.3$$

$$Q = \frac{ap \cdot ae \cdot vf}{1000} (\text{cm}^3/\text{min})$$

Legend

v_c = Cutting speed (m/min)

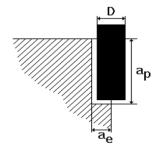
n = Spindle speed (rev/min)

_f = Feed speed (mm/min)

a_p = Axial depth of cut (mm)

a_e = Radial depth of cut (mm)

= Feed per rev (mm/rev)


z = Number of teeth

 f_z = Feed per tooth (mm/tooth)

D = Cutter diameter (mm)

h_m = Average chip thickness (mm)

Q = Material removal rate (cm³/min)

Drilling

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)

Spindle speed,
$$n = \frac{1000 \cdot v_c}{\pi \cdot D}$$
 (rev/min)

Feed speed, $v_f = f \cdot n \pmod{min}$

Feed per rev, $f = \frac{v_f}{n}$ (mm/rev)

Legend

v_c = Cutting speed (m/min)

n = Spindle speed (rev/min)

v_f = Feed speed (mm/min)

D = Drill diameter (mm)

= Feed per rev (mm/rev)

Turning 380 HB

Turni===r=					
	Cemented	HSS			
_	Roughing	Finishing			
Cutting speed, Ve (m/min)	90-130	130-180	8-13		
Feed, f (mm/rev)	0,2-0,4	0,05-0,2	0,05-0,3		
Depth of cut, a _p (mm)	2-4	0,5-2	0,5-3		
Suitable grades	P20-P30 coated carbide	P10 coated carbide or			
		cermet			

Remarks:

- 1. Cutting fluid is recommended.
- For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

Face milling Cemented carbide					
	Roughing	Finishing			
Cutting speed, v _c (m/min)	100-140	140-170			
Feed, f _z (mm/tooth)	0,2-0,4	0, 1-0,2			
Depth of cut, a _p (mm)	2-5	-2			
	P20-P40 coated carbide	P1 0-P20 coated carbide			
Suitable grades		or cermet			

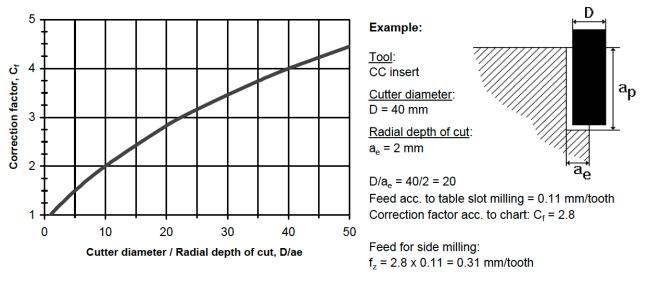
Remarks:

- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- Milling should generally be done without coolant.If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide					
	a.=0.1xD	a.= 0.5 X D	a . = 1 x D		
Cutting speed, Ve (m/min)	90-130	80-120	70-110		
Feed, f, (mm/tooth)	0,25-0,3	0, 15-0,2	0,1-0,15		
Suitable grades	P15-P40 coated carbide				

Remarks:


- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a.) so !hatat least two cutting edges are engaged simultaneously.
- If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.

End milling

Slot milling Axial depth of cut, a _p = 1 x D		Cutter diameter (mm)					
		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40	
Uncoated HSS 1-4)	Cutting speed, v _c (m/min)			8-12			
	Feed, f _z (mm/tooth)	0,01-0,03	0,03-0,04	0,04-0,05	0,05-0,06	0,06-0,09	
Coated HSS 1-4)	Cutting speed, v _c (m/min)	20-25					
	Feed, f _z (mm/tooth)	0,02-0,04	0,04-0,05	0,05-0,06	0,06-0,07	0,07-0,10	
Solid cemented	Cutting speed, v _c (m/min)		60-100				
carbide ⁵⁻⁸⁾	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04			
Indexable insert 6-8)	Cutting speed, v _c (m/min)			60-100			
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12	
inserts)	Suitable grades	P15-P40 coated carbide		rbide			
Side milling Axial depth of cut, a _p = 1.5 x D		For side milling the same cutting speed as for slot milling can					
		be used, but the feeds must be adjusted in order to obtain a					
		suitable average chip thickness.					

Correction factor for side milling

Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, $C_{\mathfrak{h}}$ this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

Remarks: (slot and side milling)

- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, a $_{\rm e}$ > 0.3 xD.
- 3. When side milling with small radial depths of cut (a $_{\rm e}$) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools.The axial depth of cut should not exceed the cutter diameter when slot milling.
- 6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a $_{\rm e}$) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.

Uddeholm Alvar 14

Drilling 380 HB

Drilling						
		Drill diameter (mm)				
		1 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS 1-2)	Cutting speed, v _c (m/min)			10-12		
	Feed, f (mm/rev)	0,05-0,15	0,15-0,25	0,25-0,35	0,35-0,40	0,40-0,45
Coated HSS 1-2)	Cutting speed, v _c (m/min)	16-18				
	Feed, f (mm/rev)	0,07-0,18	0,18-0,30	0,30-0,40	0,40-0,45	0,45-0,50
Indexable insert 3-4)	Cutting speed, v _c (m/min)		150-170			-170
(cem. carbide inserts)	Feed, f (mm/rev)				0,05-0,10	0,10-0,15
Solid cemented	Cutting speed, v _c (m/min)		100-130			
carbide ⁵⁻⁷⁾	Feed, f (mm/rev)		0,08-0,10	0,10-0,20	0,20-0,30	0,30-0,35
Brazed cemented	Cutting speed, v _c (m/min)		50-70			
carbide 5-/)	Feed, f (mm/rev)			0,15-0,25	0,25-0,35	0,35-0,40

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased.
- 3. Use insert grades in the range of ISO P20-P30.
 - Under unstable conditions a tougher carbide grade should be used for the centre position.
- 4. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 5. If machining with solid or brazed cemented carbide drills, a rigid set-up and stable working conditions are required.
- 6. The use of drills with internal cooling channels is recommended.
- 7. Use a cutting fluid concentration of 15-20 %.

Tapping with HSS

Cutting speed, v_c = 6-8 m/min

Remarks:

- 1. Threading compound or cutting oil gives a longer tool life than emulsion.
- 2. Fluteless tap (non-cutting) can with advantage be used.